
Predicate Logic

Quantifier Rules

CS251 at CCUT, Spring 2017

David Lu

May 8th, 2017

Contents

1. Universal Instantiation (UI)

2. Existential Generalization (EG)

3. Universal Generalization (UG)

4. Existential Instantiation (EI)

5. Quantifier Negation (QN) and Quantifier Equivalence (QE)

6. Multiple Quantification

1. Universal Instantiation/Elimination UI If X is a universally quantified sentence, then
you are licensed to conclude any of its substitution instances below it. Let s be any constant,
P be a predicate, and u be any variable. The natural deduction rule UI can be expressed as
follows:

1. ∀uP (...u...)

2. ...

3. P (...s...) UI

This rule, in short, allows us to eliminate the universal quantifier of a universally quantified
sentence and substitute any constant we’d like for instances of the variable that it bound. The
parenthetical notation in the argument place of the predicate denotes that the expression may
be complex and not a simple subject predicate sentence.

Here’s an example: Everyone loves Eve. Therefore Adam loves Eve.

1. ∀xLxe Premise

2. Lae 1, UI

1



In forming the substitution instance of a universally quantified sentence, you must be careful
always to put the same name everywhere for the substituted variable. Substituting a for x in
∀xLxx, we get Laa, not Lxa.

Here’s another example: All humans are mortal. Socrates is a human. Thus, Socrates is
mortal.

1. ∀x(Hx→Mx) Premise

2. Hs Premise

3. Hs→Ms 1, UI

4. Ms 2, 3 MP

Notice that the universal quantifier in the first premise binds two instances of x in the
sentence. So when we use UI at line 3, both must be replaced by our chosen constant.

2. Existential Generalization/Introduction EG Intuitively, from a closed sentence with
a constant, we are licensed to infer the existential generalization of that sentence, where ∃xPx is
an existential generalization of Pa. The natural deduction rule EG can be expressed as follows:

1. P (...s...)

2. ...

3. ∃xP (...x...) EG

From a non-quantified sentence, which contains the constant s, we are allowed to take out
one or more of the occurrences of s and substitute an existentially bound variable. Example:
Rover loves to wag his tail. Therefore, something loves to wag its tail.

1. Wr Premise

2. ∃xWx 1, EG

Here’s another example: Everyone is happy. Therefore, someone is happy.

1. ∀xHx Premise

2. Ha 1, UI

3. ∃xHx 2, EG

2



3. Universal Generalization/Introduction UG The intuitive idea for universal introduc-
tion is that if a constant, as it occurs in a sentence, is completely arbitrary, you can universally
generalize on that constant. This means that you can rewrite the sentence with a variable written
in for all occurrences of the arbitrary constant, all bound by a universal quantifier. If I can show
that an arbitrary element of set A is also an element of set B, then I am licensed to infer that
every element of A is an element of B.

There are a number of ways to state the UG rule such that the restriction that our constant
is arbitrary is satisfied. Here’s one way:

1. P (...s...) (s must name an arbitrary individual)

2. ...

3. ∀xP (...x...) 1, UG

To say that s names an arbitrary individual puts a restriction on what constants we are
allowed to universally generalize upon. In particular, s may not appear in the premises and s
may not come from the result of a use of EI. Further, every instance of s in the sentence must
be replaced by a variable when we use the rule UG.

Here’s an example of the mistake above: Everyone loves themself. Therefore, everyone loves
Alice.

1. ∀xLxx Premise

2. Laa 1, UI

3. ∀xLxa 2, UG (Mistake!)

Here is an example of a mistake in not generalizing upon an arbitrary individual: Doug is
good at logic. Therefore, everyone is good at logic.

1. Gd Premise

2. ∀xGx 1, UG (Mistake!)

Here’s a somewhat longer example: All birds have feathers. Only birds fly. Therefore, only
feathered things fly.

1. ∀x(Bx→ Fx) Premise

2. ∀x(¬Bx→ ¬Lx) Premise

3. Ba→ Fa 1, UI

4. ¬Ba→ ¬La 2, UI

5. La→ Ba 4, Contra

6. La→ Fa 3, 5 HS

7. ¬Fa→ ¬La 6, Contra

8. ∀x(¬Fx→ ¬Lx) 7, UG

Notice that the constant a in the proof above does not appear in the premises or as the result
of an existential instantiation. So a names an arbitrary individual, satisfying the restriction on
on our use of UG at line 8.

3



4. Existential Instantiation/Elimination EI The following argument is intuitively valid:
All lions are cats. Some lions roar. Therefore, some cats roar.

1. ∀x(Lx→ Cx) Premise

2. ∃x(Lx ∧Rx) Premise

3. ∃x(Cx ∧Rx) Conclusion

We have no rule yet for exploiting the existential premise. Our reasoning ought to go some-
thing like this: Suppose Simba is a lion that roars. Since all lions are cats, Simba must be a cat
that roars. So there exists a cat that roars.

There are a couple of ways to implement the EI rule. In my informal reasoning above, I asked
the reader to suppose that some individual named Simba was a lion that roars. Importantly,
Simba may, or may not, exist. So any conclusions we draw from our reasoning, cannot include
conclusions about Simba. So we might implement our EI rule as a sub-derivation rule, much like
conditional proof and indirect proof. (The boxes in the proofs below surround a subproof, much
like I do with a vertical bar when I hand write proofs.)

1. ∃xP (...x...)

2. P (...s...) Assumption for EI

3. ...

4. p p is any sentence that does not mention s

5. p 1, 2-4 EI

Here’s our initial cat argument example:

1. ∀x(Lx→ Cx) Premise

2. ∃x(Lx ∧Rx) Premise

3. Ls ∧Rs Assumption for EI

4. Ls 3, Simp

5. Rs 3, Simp

6. Ls→ Cs 1, UI

7. Cs 4, 6 MP

8. Cs ∧Rs 5, 7 Conj

9. ∃x(Cx ∧Rx) 8, EG (Notice s does not appear here)

10. ∃x(Cx ∧Rx) 2, 3-9 EI

An alternate way to schematize our EI rule is to place a restriction on what constant we’re
allowed to substitute for variables bound by the existential quantifier we’re removing. In partic-
ular, we must pick a new constant, one that does not appear earlier in our proof.

1. ∃xP (...x...)

2. ...

3. P (...c...) 1, EI (c must be a new constant, not appearing earlier in the proof)

The result of either version of the rule is the same sort of restriction on how we may use the
EI.

4



5. Quantifier Negation QN and Quantifier Equivalence QE In addition to the rules
allowing us to introduce or eliminate the two quantifiers, we have some rules allowing us to
translate from one quantifier to the other and visa versa as well as some natural equivalences
between quantified statements.

Here are some QN rules. Let W be some well formed formula. I left out the variables for
readability.

1. ∀W ≡ ¬∃¬W

2. ∃W ≡ ¬∀¬W

3. ¬∀W ≡ ∃¬W

4. ¬∃W ≡ ∀¬W

Here are some QEs or quantifier equivalences.

1. ∀x∀yW ≡ ∀y∀xW

2. ∃x∃yW ≡ ∃y∃xW

3. ∀(Px ∧Qx) ≡ ∀xPx ∧ ∀yQy

4. ∃(Px ∨Qx) ≡ ∃xPx ∨ ∃yQy

5. ∀xWx ≡ ∀yW (x/y) Where (x/y) means replace each instance of x with y

6. ∃xWx ≡ ∃yW (x/y) Where (x/y) means replace each instance of x with y

6. Multiple Quantification To represent the sentence, Someone gave a bracelet to Alice
we need to associate quantifier phrases with two of the noun phrase positions in the predica-
tive context: x gave y to z (Gxyz). There’s no special problem about this; we simply prefix
both quantifiers, using the variables to link each quantifier with the appropriate noun phrase:
∃x∃y(Gxya ∧ Px ∧By), where Px means ”x is a person” and By means ”y is a bracelet.”

Another example. Any elephant is larger than every person: ∀x∀y((Ex ∧ Py)→ Lxy)

5


